7 research outputs found

    A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging

    Get PDF
    The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology

    A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging

    Get PDF
    The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology

    Precision medicine in non-small cell lung cancer: Current applications and future directions

    No full text
    Advances in biomarkers, targeted therapies, and immuno-oncology have transformed the clinical management of patients with advanced NSCLC. For oncogene-driven tumors, there are highly effective targeted therapies against EGFR, ALK, ROS1, BRAF, TRK, RET, and MET. In addition, investigational therapies for KRAS, NRG1, and HER2 have shown promising results and may become standard-of-care in the near future. In parallel, immune -checkpoint therapy has emerged as an indispensable treatment modality, especially for patients lacking actionable oncogenic drivers. While PD-L1 expression has shown modest predictive utility, biomarkers for immune-checkpoint inhibition in NSCLC have remained elusive and represent an area of active investigation. Given the growing importance of biomarkers, optimal utilization of small tissue biopsies and alternative geno-typing methods using circulating cell-free DNA have become increasingly integrated into clinical practice. In this review, we will summarize the current landscape and emerging trends in precision medicine for patients with advanced NSCLC with a special focus on predictive biomarker testing

    Response to Immune Checkpoint Inhibition as Monotherapy or in Combination With Chemotherapy in Metastatic ROS1-Rearranged Lung Cancers

    No full text
    Introduction: ROS1 fusions are oncogenic drivers in 1% to 3% of NSCLCs. The activity of immune checkpoint inhibitor (ICI) monotherapy or in combination with chemotherapy (chemotherapy with ICI [chemo-ICI]) in these tumors and their immunophenotype have not been systematically described. Methods: In this multi-institutional retrospective study, tumor programmed death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB) were evaluated in patients with ROS1-rearranged NSCLC. Time-to-treatment discontinuation (TTD) and objective response rate (ORR) (Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) were calculated for patients treated with ICI or chemo-ICI in the metastatic setting. Results: A total of 184 patients were identified. Among 146 assessable cases, PD-L1 expression was less than 1% in 60 (41%), 1% to 49% in 35 (24%), and greater than or equal to 50% in 51 tumors (35%). Of 100 (92%) TMB-assessable tumors, 92 had less than 10 mutations per megabase. TMB was significantly lower for ROS1-rearranged tumors (n = 97) compared with tumors with EGFR (n = 1250) or KRAS alterations (n = 1653) and all other NSCLC tumors (n = 2753) evaluated with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (median TMB = 2.6 versus 3.5, 7.0, and 6.1 mutations per megabase, p < 0.001). Among patients treated with ICI, median TTD was 2.1 months (95% confidence interval [CI]: 1.0–4.2 mo; n = 28) and ORR 13% (2 of 16 RECIST-assessable; 95% CI: 2%–38%). Among patients treated with chemo-ICI, median TTD was 10 months (95% CI: 4.7–14.1 mo; n = 11) and ORR 83% (5 of 6 RECIST-assessable; 95% CI: 36%–100%). There was no difference in PD-L1 expression (p = 0.91) or TMB (p = 0.83) between responders and nonresponders. Conclusions: Most ROS1-rearranged NSCLCs have low PD-L1 expression and TMB. The activity of ICI in these tumors is modest. In contrast, chemo-ICI can achieve meaningful activity

    Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS

    No full text
    Liquid biopsies allow the non-invasive detection of somatic mutations from tumours. Here, the authors develop and test MSK-ACCESS, an NGS-based clinical assay for identifying low frequency mutations in 129 genes and describe how it benefits patients in the clinic
    corecore